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To eliminate the checkerboard pattern, a new topology optimization methodology based on the constrained maximum-weight 
connected graph theorem and algorithm is proposed. A Kriging model based on the support vector machine for predicting the 
sensitivity is introduced to reduce the overwhelmingly heavy computational burden as required in a topology optimizer. From the 
numerical results as reported, it is observed that the proposed methodology is able to avoid the checkerboard pattern, and can improve 
significantly the final solutions with a reduced computation time. 
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I. A  NEW TOPOLOGY OPTIMIZATION METHODOLOGY 

OPOLOGY optimization is the conceptual design of a 
product and also the highest level in the design phase. It 

can create a novel topology, which is beyond ones imagination, 
for a product in its early conceptual design phase. Nowadays, 
topology optimization has become the new paradigm to 
provide a quantitative design method for modern devices [1]. 

A topology optimization is generally defined to find the best 
material distribution of the structure in the design space, and it 
is only after the introduction of computationally expensive 
finite element methods into topology optimization procedures 
that the topology optimization techniques can be used to solve 
various types of structure topologies. Moreover, the gradient 
information is generally employed to update the material of an 
element. All these factors are demanding heavy computation 
resources to make topology optimization an overwhelmingly 
complicated numerical study. Moreover, checkerboard 
patterns and gray areas are often involved in the final solutions 
of a topology optimizer. To address these two issues, a new 
topology optimization methodology based on the constraint 
maximum-weight connected graph (CMWG) theorem is firstly 
proposed and validated.  

A. Iterative Procedures of the Proposed Methodology 

To facilitate the understanding and description of the 
proposed methodology, its iterative procedures are given as: 

Step 1: Compute the sensitivity of every element in the 
search domain; 

Step 2: Apply the CMWG theorem and algorithm to update 
the state of every element to generate new checkerboard 
pattern free candidate topologies; 

Step 3: Annealing? If No, go to Step 1; Otherwise, continue 
to the next Step; 

Step4: Anneal. Stop Iterations? If Yes, terminate the 
methodology; Otherwise, go to Step 1.  

B. Element Attribute Updating using CMWG Theorem 

A checkerboard pattern refers to the phenomena of 

alternating presence of solid and void elements ordered in a 
checkerboard like fashion [1]. This pattern can be commonly 
produced in various finite element based structural 
optimization processes. In order to eliminate the checkerboard 
patterns, the CMWG theorem and algorithm are firstly 
extended to update the ON/OFF state of an element. 

Given a positive integer R and an undirected graph G=(V,E), 
in which each vertex is assigned a weight, the CMWG 
theorem and algorithm are to find a connected subgraph with 
R vertices that maximizes or minimizes the sum of the weights 
under the constraint of having some predefined vertexs 
included in the solution [2].  

To implement CMWG algorithm in topology optimizations, 
the integer R is the number of elements that should be added 
and updated to the currently optimized elements, and the 
weight in an element is the sensitivity of the element in issue. 
To intuitively explain the mechnism of the proposed CMWG 
algorithm to update the attribute of an element, a step by step 
description of R=2 using Fig.1 and Fig.2 is given as: 

Step1: Identify the sub-region to update element attributes.  
To identify the  sub-region, for a 2D problem, for every 

element, a rectangle, centered in the element in question with 
a side length of (2R+1), is firstly constructed. In Fig. 1(a), the 
green region is the identified sub-region from one fixed 
(yellow) element. Morover, Fig.2 (a) shows the corresponding 
sub-region which is a union of all rectangles identified from 
each fixed element when there are more than one fixed 
elements. 

Step2: Find a connected subgraph of R elements in the 
search (just identified) domain under the constraint of having a 
predetermined vertex included. 

There are 276 ( 2
24C ) possible two-element combinations in 

the search domin as illustrated in Fig.1(a); while the two red 
elements with the maximum sum of weights are selected as 
the optimal elements to update element states under the 
constraint of continuously connecting with the yellow element 
(air element) as shown in Fig.1 (b).  

Since the CWMG problem is NP-hard, for a large scale 

T 



graph, it is not feasible to solve the integer linear 
programming directly. For this reason, the Balas additive 
method [3], an enumeration scheme for solving 0-1 integer 
programming problem, is employed in this paper. 

Step3: Update the fixed elements and return to step1 
After the two red elements are selected as the optimal 

elements in Fig.1(b), the fixed elements are updated as the 
yellow colored region of Fig.2 (a) containing three elements. 
The procedure continues to next cycle starting from the 
topolgy as shown in Fig.2 (b). 

       

 
                                     (a)                                            (b) 
Fig. 1. Element states in the 1st step in the proposed methodology 

 
                                     (a)                                           (b) 
Fig. 2. Element states in the 2nd step in the proposed methodology 

C. Sensitivity Computation 

To determine the material attribute of an element, the 
sensitivity is used in the proposed methodology. Nevertheless, 
the computational cost of the proposed methodology is still 
overwhelmingly expensive because of nearly infinite decision 
parameters. To address this issue, a fast and accurate approach 
is proposed based on a support vector machine (SVM). More 
specially, to reduce the computational burden for sensitivity 
analysis, after every M cycles, the sensitivity of an element is 
predicted from the information gathered both in its previous n 
iterations and in its neighbor elements, which are defined in 
Fig.3. It should be pointed out that to consider the different 
contributions of an element in issue and its neighbor ones, the 
sensitive information for the two type elements is a weighted 
accumulation of the information. 

Element in issue

Neighbor elements
 

Fig.3. The definition of three types of element neighbors 

II. NUMERICAL APPLICATION 

To testify the proposed methodology, a magnetic actuator 
including a yoke, a coil and an armature is topologically 
optimized to maximize the magnetic force in a specific 
direction. 

To predict the sensitivity using the proposed SVM based 
Kriging model, the history data in the previous 10 iterations 
and neighbor elements, a total of 10×6 training data, are used 
to compute the sensitivity of every element after every 2 
cycles. The details of the 10×6 matrix training data are 
explained as: each row represents the index of the element. 
The 6 columns  represent, respectively, the sensitivity of the 
element; the average, the maximum, the mimimum 
sensitivities of the neighbor elements; the force and the 
material volume percentage of the present topology. Fig. 4 
compares the real sensitivity and the predicted result of the 
10th iterartive cycle. Table I tabulates the final solutions of the 
ON/OFF method and the proposed methdology with 
(CMWG_with) and without (CMWG_no) the proposed 
sensitivity computation methodology. It should be noted that 
in order to avoid the checkerboad patterns, a very complex 
annealing mechnism is used in the ON/OFF method. 
Moreover, the checkerboad patterns as commonly accompnay 
the final solution of a topolgy optimizer is effectively avoided. 

To summary, the constraint maximum-weight connected 
graph theorem and algorithm are firstly extended to devlop a 
novel topology optimization methdology to eliminate the 
checkerboad patterns. A suport vector based Kriging model is 
introduced for the fast computation of the sensitivity. 

 
Fig. 4. The real and predicted sensitivities in the 10th cycle. 

TABLE I 
THE COMPARISON OF DIFFERENT TOPOLOGY OPTIMIZATION METHODS 

  ON/OFF CMWG_no CMWG_with 
Force (N/m) 55.82 54.16 54.16 
Material  volume(%) 75 74 74 
No. iterations / 49 33 
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